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LETTER TO THE EDITOR 

Solution of a random chain problem: an approach using 
canonical variables of an integrable system 

M Opper 
lnstitut fur Theoretische Physik, Universitat Giessen, D-6300 Giessen, West Germany 

Received 25 June 1986 

Abstract. The correspondence between a one-dimensional tight binding Hamiltonian and 
the Lax eigenvalue problem of the classical Toda lattice is applied to a disordered chain. 
A model with specific diagonal and off-diagonal disorder is solved by using canonical 
spectral variables. An exact analytical expression for the density of states is presented. 

We consider a one-dimensional tight binding Hamiltonian of the form 

H = C  [In)En(nI+ vn(In)(n+ll+ln+l)(nI)I. (1) 

(2) 

n 

The corresponding discrete Schrodinger equation for the wavefunction 4 E ( n )  is 

( E ,  - ( n )  + v,-lc$ E ( n  - 1) + V,f#JE( n + 1) = 0 n=O,*1,*2 ,.... 
We want to study the distribution of its eigenvalues for random matrix elements E, V 
taken from a probability distribution P: 

d P = p ( .  . . , El,. . . , VI,.  . .) n (dEk dvk). 
k 

A direct way of doing this would be a variable transformation to eigenvalues and a 
calculation of their joint probability density. Clearly this seems in general a formidable 
task involving complicated Jacobians. 

Unexpectedly, such a direct solution-at least for certain weight functions p-can 
be found in the field of non-linear classical Hamiltonian systems. There it has been 
shown (see, for example, Eilenberger 1981) that a variety of non-linear evolution 
equations can be written as the time evolution of a linear operator involving the 
dynamical variables as matrix elements. The spectrum of this operator-often called 
the Lax operator (Lax 1968) of the non-linear system-provides new coordinates for 
the system, allowing for a complete integration of the equations of motion. 

However, the main result of this ‘inverse spectral method’ (Ablowitz er a1 1974) 
relevant to our work is that the mapping from matrix elements to ‘spectral data’ appears 
as a classical canonical transformation (McLaughlin 1975), thereby preserving the 
volume elements in phase space. 

The operator H in (1) can be interpreted as the Lax operator of the classical Toda 
lattice if we set Vn =exp [f(Qn-Q.+l)], where Qn and E, are displacements and 
momenta of the nth Toda particle. 

The Toda lattice is an integrable Hamiltonian system with Poisson brackets 
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and Hamilton function 

For the periodic ( N  + 1)-particle Toda lattice of length L 

&n+N+I = 

Qn+N+I = Q n + L  

it was shown (Flaschka and McLaughlin 1976, Sklyanin 1985) that the zero-boundary 
eigenvalues E l , .  . . , E N  of H defined by r#JEi(0) = 4'1( N +  1) = 0 satisfy { E i ,  E j }  = 0 
for i , j = l ,  . . . ,  N. 

Variables canonically conjugate to the E are given by f; = ln14E,(N+2)1 where 
r#J" , (  1) = 1 was taken. We therefore have the relations 

The 2 N  spectral variables E,,f;, i = 1, .  . . , N together with Q N + I  form a complete 
set of canonical variables. 

We use the Liouville volume element dR in phase space to build up the probability 
distribution P for the matrix elements E , ,  V,. Since dR is invariant under canonical 
transformations the Jacobian equals one and we simply have 

N N 

dR = n (dQ, dei)  = n (df; dEi).  
i = l  i = l  

(7) 

Here we have fixed O N + ) =  = 0 for convenience. 
To define a statistical weight function we have to note that, in principle, every 

symmetric function of E and V can be expressed by spectral variables too. But up to 
now this construction has been carried out explicitly only for the function hT& (4). 

We define 

d P  - di2 e-h (8) 

with 

It can be shown (Flaschka and McLaughlin 1976, Toda 1981) that this function is 
expressed in terms of the spectral variables via 

The weak correlations of the random variables v, in (8) due to the constraint (cf 5 ( b ) )  
L = -2 X:=+,' In V ,  can be neglected in the thermodynamic limit N -* 03. Using the 
equivalent constant pressure ensemble dP, they can be explicitly avoided: 

m 

d P, - dR j-m d L e-h e-yL y > o .  

L and y are related by y = a  In ZL/aL with the partition function 2, = I  dR e-h 
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We obtain, after simple variable transformations 
N 

dP,- n [d&, dV, V2-I exp(-i&i- Vi)].  
, = I  

The Hamiltonian ( 1 )  with the same distribution of hopping terms V, but with E,  = 0, 
n = 0, * l ,  . . . , has been studied by Dyson (see Dyson 1953, Theodorou and Cohen 
1976). In our model both quantities are random variables. 

The joint probability density w ( E , ,  . . . , E N )  of eigenvalues is easily obtained by 
substituting the classical Hamilton function (9) into (8) and integrating over the$ We 
obtain 

N 

w ( E , , .  . . , EN)=Z; lexp(-  i = l  ( t~: - ln(2K,[Zexp(-NII(E, ) ) l~j ) .  (12) 

KO is a modified Bessel function (Abramowitz and Stegun 1970) and the expression 

k # i  

equals the Thouless inverse localisation length (Thouless 1972) for an eigenstate of 
the Hamiltonian ( 1 ) .  

We next choose a large E interval (-c, c), partition it into k intervals of length A 
and calculate the probability W(n,, . . . , n k )  of finding the first n, eigenvalues in 
(-c, - c + A ) ,  the next n, eigenvalues in ( - c + A ,  -c+2A) ,  etc, with n i =  N. 
Integrating w (  E , ,  . . . , E N )  over the corresponding volume in the space of El ,  . . . , EN 
we find 

where ( E ; ,  . . . , E L )  is some interior point of the region of integration. 
For N + CO the macroscopical eigenvalue distribution is found from maximising W 

with respect to n i .  To perform this calculation in the limit A + 0 (13) is expressed in 
terms of the density of states (e.g. n/ N = p(  €?)A). 

The inverse localisation length 

1/1(E) =4+ p(x)  lnlE --XI dx 
2 N  

is a positive quantity for the eigenvalue distribution of interest (all eigenstates 
are localised for one-dimensional disorder). Thus the approximation 
Ko[2  exp(-N/I(E))]= N / l ( E )  is valid for N+co. 

We arrive at 

W ( n l , .  . . , n k )  + W p l =  exp(-F[pl) (15) 
with 

uc 

F[p] = N I-, dEp(E)[iE2+ln(;p1) - 11 

where the limit C + C O  is implied. Note that 1 depends on p according to (14). 
Straightforward variation of F[p] -FN p ( E )  d E  leads to the integral equation: 

CO 

i E 2 - F + l n  w ( E )  - 2  lnlE -xlw(x) dx = O  (16) 
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for the auxiliary function w = $ l (  E ) p (  E) .  The chemical potential p is introduced to 
satisfy the constraint p ( E )  d E  = 1. Differentiating (16) with respect to p and compar- 
ing with (14) shows that 

~a 
N aP 

p ( E ) = -  -w(E). 

Using L/  N = apu/ay we finally have 

The non-linear equation (16) also appears in the classical Bethe ansatz treatment of 
the statistical mechanics of the Toda lattice. It has recently been solved analytically 
(Opper 1985). Substituting this solution into (17) yields our final expression for the 
density of states 

p (E)  = T-' Im In Iom dt exp(iEt) exp(-t2/2)rY-', 
ay aE 

We have plotted this result for y = 5 in figure 1 together with the ensemble-averaged 
density of states from a numerical simulation. Both calculations coincide. 

To summarise: the density of states of a disordered chain with a specific diagonal 
as well as off-diagonal disorder has been calculated using the canonical structure of 
spectral variables. 

Obviously an analogous procedure can be applied to the Lax eigenvalue problems 
of other integrable systems. Their statistical mechanics have been extensively studied 
using classical Bethe ansatz techniques (see, for example, Timonen e? a1 1986). These 
results may be used to obtain new exact solutions for disordered systems. 
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Figure 1. Density of states for y = 5.  Smooth curve: analytical solution (18). The step 
function was obtained by counting eigenvalues in intervals of length A=O.2236 and 
averaging over a sample of 15 chains (N = 20 OOO). 
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